Площади оснований правильной четырехугольной пирамиды - если площади ДВЕ,значит пирамида усеченная.
S1 = 4 см2 -квадрат со стороной x=√S1 =√4 = 2 см -диагональю a=x√2=2√2 см
S2=64 см2 -квадрат со стороной y=√S2 =√64 = 8 см-диагональю b=y√2=8√2 см
Тогда площадь диагонального сечения пирамиды - это равнобедренная трапеция с острым углом 45° , верхнее основание a = 2√2см ; нижнее основание b = 8√2 см ;
высота трапеции h = (b-a)/2 *tg45 = (8√2-2√2)/2*1=3√2 см
площадь диагонального сечения S = (a+b) /2 *h= (8√2+2√2)/2*3√2=30 см2
ОТВЕТ 30 см2
Проводим прямую BK параллельную CD. BCDK-параллелограмм.BC=KD=5.По св-ву перпенд.AE перпендик.CD,перпенд.BK (перес.BK в т.О)В треуг. ABK AO-биссектр, и высота, значит тр-к равнобедр.,AB=AK=20.Отсюда AD=25. угол AFC=углу DAF(вн.накрест.леж. при парал.BC и AD и секущ.AF)Значит угол AFC=углу BAF отсюда треуг.ABF-равноб.AB=BF=20$ CF=15 CE^2=225-144=81 CF=9 Треуг.CFE подобен треуг.BOF, CF/BF=CE/BO отс.BO=12 По св-ву равноб.тр-ка BO=OK=12 ; AO^2=400-144=256 AO=16 Проведем высоту BL/ Тр-к LBK подобен тр-ку AOK отсюда BK/AK=BL/AO BL=96/5; Площадь= (BC+AD)/2*BL=288