Через точку а, удаленную от плоскости альфа на расстояние корень из 3 см, проведена прямая, пересекающая плоскость альфа в точке в. найдите угол между прямой ав и плоскостью альфа, если ав=2см.
По условию точка О удалена от прямой АВ на 6 см. Расстояние от точки до прямой - длина перпендикуляра от этой точки до прямой, поэтому строим перпендикуляр ОК, равнй 6 см. Центральный угол АОС опирается на дугу АС, значит градусная мера дуги АС равна 90° также. Вписанный угол АВС опирается на ту же дугу АС и равен ее половине. Значит <ABC=90:2=45° <OBA=<ABC-<OBC=45-15=30° Рассмотрим прямоугольный треугольник ОКВ. Гипотенуза ОВ является искомым радиусом окружности. Зная, что катет в прямоугольном треугольнике, лежащий против угла в 30°, равен половине гипотенузы, можем записать: ОК=ОВ:2, отсюда ОВ=ОК*2=6*2=12 см
Если достроить трапецию до треугольника, то точка Р -- центр вписанной в этот треугольник окружности (((центр вписанной в треугольник окружности = точка пересечения биссектрис))) расстояния до этих прямых --- это радиусы... единственное, Вы не указали АВ -- это основание или боковая сторона... если АВ -- боковая сторона трапеции, то окружность окажется заключенной между параллельными основаниями трапеции... и эта окружность будет вписана в углы C и D ((т.к. центр окружности --- пересечение биссектрис этих углов))) биссектриса = это геометрическое место точек, равноудаленных от сторон угла... т.е. точка, лежащая на биссектрисе угла ADC равноудалена от AD и DC точка, лежащая на биссектрисе угла DCВ равноудалена от DС и CВ...
sinA=BB1/AB=(3^1/2)/2, угол A=60`