Дано: окружность, О - центр, AB и CD — хорды, AB∩CD= т.Р, АР= 5, ВР= 16, DP= 4CP.
Найти: СР.
Решение.
По условию СР в 4 раза больше DP. Пусть DP= x, тогда CP= 4x.
Согласно теореме о пересекающихся хордах окружности, если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды. Таким образом, получаем равенство:
Если провести высоту к основанию (это будет и биссектриса и медиана))), получим прямоугольный треугольник с гипотенузой 10 и катетом 6 ---это прилежащий к углу при основании катет по определению косинуса, (угол при основании ---альфа (это будут два равных угла))) cos(альфа) = 0.6 ---по таблице Брадиса можно найти величину угла в градусах (это примерно 53 градуса))) косинус угла при вершине можно найти по т.косинусов 144 = 100+100 - 2*10*10*cos(b) cos(b) = 56 / 200 = 0.28 угол (b) примерно равен 74 градуса
По стороне основания прав. треугольника найдите радиус впис. окружности ОК По ОК и углу МКО найдите высоту боковой грани МК Далее площадь одной боковой грани, а затем и боковую поверхность Площадь основания=(1/2)a^2sin60°, где а - сторона основанияб)расстояние от вершины основания до противоположной боковой грани. На чертеже соответствующего отрезка нет Пусть ВЕ- высота, опущенная из В на МК (докажите, что это перпендикуляр к плоскост МАС) Находим ее из прямоугольного треугольника ВЕК: угол ВКЕ=45, ВК- медиана в правильном треугольнике со стороной а равна a√3/2
Дано: окружность, О - центр, AB и CD — хорды, AB∩CD= т.Р, АР= 5, ВР= 16, DP= 4CP.
Найти: СР.
Решение.
По условию СР в 4 раза больше DP. Пусть DP= x, тогда CP= 4x.
Согласно теореме о пересекающихся хордах окружности, если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды. Таким образом, получаем равенство:
AP•BP= CP•DP;
5•16= 4x•x;
80= 4x²;
x²= 20;
x= √20= 2√5 (е.д.)
РС= 4х= 4•2√5= 8√5 (е.д.).
ответ: 8√5 е.д.