Объяснение (подробно): Нарисуем треугольник АВС. Пусть АВ=3√7, ВС=12, О- точка пересечения биссектрис из А и С.
Рассмотрим треугольник АОС. Угол ЕОС - внешний. По свойству внешнего угла сумма двух внутренних углов, не смежных с ним, равна 30°. Эти углы - половины углов при стороне АС треугольника АВС .Поэтому угол ВАС+ВСА=60°. Из суммы углов треугольника угол АВС=180°-60°=120°.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны, α – угол между ними. S (ABC)=0,5•3√7•12•√3/2=9√21 (см²)
=========
Задача решена по данному в вопросе условию. Возможно, условие дано с ошибкой и одна из сторон не 3√7, а 7√3. Тогда площадь будет иной. Вычислите ее самостоятельно.
Сначала нужно разобраться сумма каких углов равна 170 градусам. Сумма углов прилежащих к одной стороне равна 180 градусов,значит прилежащими к одной стороне они не могут быть. Остаётся,что они могут быть только противолежащими. Из свойства противолежащих углов мы знаем,что противолежащие углы параллелограмма равны,значит: угол АВС равен углу СДА. Следовательно,угол АВС= 170/2=85=углу СДА Сумма углов,прилежащих к одной стороне равна 180 градусов. Следовательно: угол ВАД = 180-угол АВС=180-85=95=углу ДСВ(противолежащие углы)
ответ: 9√21 (см²)
Объяснение (подробно): Нарисуем треугольник АВС. Пусть АВ=3√7, ВС=12, О- точка пересечения биссектрис из А и С.
Рассмотрим треугольник АОС. Угол ЕОС - внешний. По свойству внешнего угла сумма двух внутренних углов, не смежных с ним, равна 30°. Эти углы - половины углов при стороне АС треугольника АВС .Поэтому угол ВАС+ВСА=60°. Из суммы углов треугольника угол АВС=180°-60°=120°.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны, α – угол между ними. S (ABC)=0,5•3√7•12•√3/2=9√21 (см²)
=========
Задача решена по данному в вопросе условию. Возможно, условие дано с ошибкой и одна из сторон не 3√7, а 7√3. Тогда площадь будет иной. Вычислите ее самостоятельно.