77°
Объяснение:
Правилно ,если <ALC=81°,a <ABC=59°.
Окружность касается сторон AB и AD прямоугольника ABCD и пересекает DC в единственной точке F, а BC-в точке E.
Найти площадь AFCB, если AB=32, AD=40 и BE=1
————
АBCD- прямоугольник. ⇒
AFCB - прямоугольная трапеция. Площадь трапеции равна произведению полусуммы оснований на высоту.
S=0,5•(FC+AB)•BC
СF следует найти.
Проведем радиусы ОК и ОТ к АВ и АД соответственно.
АК=ОК=ОТ=ТА=R
Опустим из Е перпендикуляр ЕН на радиус ОК
КН=ВЕ=1⇒ НО=R-1
ЕН=ВК=АВ-R=32-R
По т.Пифагора из ∆ ОЕН
R²=(32-R)²+(R-1)²⇒
R²-66 R+1024=0 Решив квадратное уравнение, получим два корня:
R1=41; R2=25
Первый не подходит, т.к. больше, чем АВ, и будет касаться не АВ, а её продолжения.
R=ОЕ=25
Проведем ОМ перпендикулярно СD.
Основание СF=CM+MF
CM=BK=AB-R=7
MF=√(OF²-OM²)
OM=AD-R=40-25=15
MF=√(25²-15²)=20
CF=20+7=27
S=0,5•(27+32)•40=1180 ( ед. площади)
задание 1
ответы: 3 4
задание 2
т.к. KP=PM то трк равнобедренный значит PH- медиана биссектриса и высота следовательно угол KPH= углу HPM=21 градус. угол PHK=90 градусов
ответ: угол PHK=90 а угол KPH=21 градус
Задание 3
т.к. AO=OD угол BAO= углу CDO (по усл задачи)
угол AOB=углу DOC(смежные)
то треугольники равны по 2 признаку равенства
Задание 4
по условию задачи ML=MN значит трк MNL равнобедренный MD делит основание тр-ка на две равные половины значит MD биссектриса а биссектриса в равнобедренном тр-ке является и медианой и высотой
Задание 5
диаметры в круге равны значит в точке центра делятся пополам и у нас образуются 2 равнобедренных тр-ка MPN и OPK также у этих тр-ков есть вертикальные углы которые равны угол POK= углу MOH тогда треугольник POK равен тр-ку MON по 1 признаку тогда углы
OMN=OHM=OPK=OKP=40 градусов
Объяснение:
Возможно,в задании есть ошибка. Потому что сумма углов больше 180°