Площадь трапеции ABCE равна 18 кв. единиц
Пошаговое объяснение:
Отметим середину стороны АВ через F (см.). Тогда отрезок EF делит параллелограмм ABCD на два равные параллелограммы AFED и FECB. В параллелограмме AFED отрезок AE будет диагональю. В параллелограмме FECB также проведём диагональ EB. По свойству параллелограмма диагонали делят площадь параллелограмма на 2 равные треугольники. В итоге получаем 4 равные треугольники. Если площадь треугольника ADE равна 6 кв. единиц, то площадь трапеции ABCE равна 3·6=18 кв.единиц.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²