В трапеции ABCD боковые стороны AB=CD=13 см, .основания BC=15см ,AD=21 . ОПУСТИМ на основание АD высоты BE И СF. тогда EF=BC=15см AD-EF 36 - 12 AE=FD= 2 = = 2 = 12 см применив теорему пифагора к прямоугольному треугольнику ABE найдём высоту BE BE²=AB²-AE²=13²-12²=169-144= 25 или BE=5 см найдем площадь трапеции : S ( ABCD)= (BC+AD): 2 ×BE=(15+21):2×5 =36:2×5=90см² ответ: 90 см ²
Задача: Дан ΔABC — равнобедренный, AC = BC = 10, AB = 16. Найти tg A, sin A.
Проведем высоту CH в ΔABC к стороне AB. Образуется два равных треугольника, т.к. ΔABC равнобедренный. AH = HB = 16/2 = 8.
Р-м ΔACH:
∠AHC = 90°, т.к CH — перпендикуляр к AH (AH∈AB) ⇒ ΔACH — прямоугольный.
Синус угла равен отношению противолежащего катета к гипотенузе.
Найдем катет CH за т. Пифагора:
Тогда синус ∠A будет равен:
Тангенс угла равен отношению противолежащего катета к прилежащему:
ответ: tg A = 0,75; sin A = 0,6.