а) "Всякий ромб является квадратом" - нет, это неверно. Квадрат - это тоже ромб, но все его углы прямые. Но также есть такие ромбы, у которых есть два острых угла и два тупых угла. Поэтому утверждения "а" неверно.
б) "Если диагонали четырёхугольника взаимно перпендикулярны, то он является ромбом" - нет, это неверно. Диагонали могут быть взаимно перпендикулярными, например, и у трапеции (трапеция - четырёхугольник с двумя параллельными сторонами) Но это не значит, что трапеция - ромб. Поэтому утверждения "б" неверно.
в) "Существует квадрат, который не является ромбом" - нет, это неверно. Квадрат - это всегда ромб, так как все его стороны равны между собой. Поэтому утверждения "в" неверно.
г) "Если диагонали параллелограмма не равны, то он не прямоугольник" - да, это верно. Так как диагонали прямоугольника всегда равны, не иначе. Поэтому утверждения "г" верно.
что бы найти площадь равнобедренного треугольника нужна высота. s=ah/2
чертим высоту вн. а высота в равнобедренном треугольнике является медианой и высотой, и делит основание на 2 равные части. значит ан=нс=24: 2=12
нам нужной найти высоту вн
вн можно найти по теореме пифагора, ведь треугольник авн прямоугольный т.к вн является ещё и высотой
вн= корень из ав ²-ан²
вн=корень из 144-169=25 корень из 25 =5
площадь треугольника равна ан/2
а=ан
н=вн
s=5*12/2=30 это площадь треугольника авн а треугольник внс ему равен по 3-м сторонам.
1)ав=вс=13
2)ан=сн=12
3)вн- общая =>
треугольник равны, значит и площади их равны. а площадь треугольника авс=авн+внс
авс=60
ответ : 60 см²