Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).
прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).
За властивістю прямокутного трикутника
h^2= AH•BH
(це виводиться із подібності прямокутних трикутників ABC і CBH).
Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.
У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:
AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,
за теоремою Вієта, отримаємо
x1=1 і x2=-5<0, звідси AH=1 см.
AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.
Відповідь: 5.
проведем высоту к основанию, она будет являться медианой
1) делит основание на два равных отрезка
2)образует с основанием угол в 90*
получится два равных прямоугольных треугольника.
рассмотрим один из них- нам известна гипотенуза и катет.
Х-высота ( в р/б) и катет(в прямоугольном треугольнике)
Гипотенуза=13
Один из катетов равен половине основания
10/2=5
по т пифагора найдем неизвестный катет( Х, высоту р/б)
13^2=5^2+x^2
x^2=169-25
x^2=144
x=корень из 144
х=12 дм
б)
s(р/б)=а*h/2 (а - основание)
s(р/б)=12*10/2
s(р/б)=12*5
s(р/б)=60 дм^2