площадь АВС=1/2*АВ*АС*sin30=1/2*6*10*1/2=15, АС в квадрате=АВ в квадрате+АС в квадрате-2*АВ*АС*cos30=36+100-2*6*10*корень3/2=136-60*корень3, АС=корень(136-60*корень3), периметр=6+10+корень(136-60*корень3)=16+корень(136-60*корень3), можно провести высоту на АС, тогда треугольник АВН прямоугольный, ВН=1/2АВ=6/2=3, АН=корень(АВ в квадрате-ВН в квадрате)=корень(36-9)=3*корень3, НС=АС-АН=10-3*корень3, треугольник ВНС прямоугольный, ВС=корень(ВН в квадрате+НС в квадрате)=корень(9+100-60*корень3+27)=корень(136-60*корень3) и периметр такой же, только ответ что то не нравится
В треугольнике АВС: <A=60°, <C=45°, высота ВН=5 см. В прямоугольном треугольнике АВН катет АН равен АН=ВН*tg30° или АН=5*(√3/3) см. Или так: В прямоугольном треугольнике АВН гипотенуза АВ=2*АН (АН - катет против угла 30°). Тогда по Пифагору 4АН²-АН²=25 или 3*АН²=25. АН=5√3/3. В прямоугольном треугольнике СВН угол СВН равен 45°, так как сумма острых углов прямоугольного треугольника равна 90°. Это равнобедренный треугольник и ВН=НС=5 см. Тогда АС=АН+НС или АС=5√3/3 + 5 = (5√3/3+15)/3 см. Площадь треугольника равна S=(1/2)*BH*AC или Sabc=(1/2)*5*((5√3/3 +15)/3)=25(√3+3)/6 ≈ 118,3/6 ≈19,72 см. ответ: Sabc≈19,72 см.