В параллелограмме противолежащие углы равны значит если < C = 30°, то < A тоже = 30°. Тогда в треугольнике ABH катет BH лежит против угла в 30°, значит катет BH равен половине гипотенузы AB, то есть гипотенуза AB в два раза больше BH. AB = 2 * BH = 2 * 6,5 = 13 см В параллелограмме противолежащие стороны равны, значит CD = AB = 13 Периметр это сумма длин всех сторон, значит P = AB + CD + AD + BC 50 = 13 + 13 + AD + BC AD + BC = 24 Но AD = BC значит каждая из них по 12 см ответ : стороны параллелограмма 13 см, 13см, 12см, 12см
Если на сторонах треугольника, лежащих против вершин A, B и C взять середины A', B' и C' соответственно, то получим три треугольника ABB', BCC' и CAA', которые равны по двум сторонам и углу между ними (AB = BC = AC, потому что это стороны данного равностороннего треугольника, AB' = BC' = CA', потому что это половины равных сторон AC, AB и BC соответственно, углы BAB', CBC' и ACA' также равны, т. к. это углы данного треугольника, в равностороннем треугольнике три угла равны по 60 градусов) . В равных треугольниках против равных углов лежат равные стороны, значит стороны BB', CC" и AA', лежащие против равных углов, BAB', CBC' и ACA' равны. Но это и есть медианы данного равностороннего треугольника (т. к. A', B' и C' - середины, лежащих против вершин А, В и С, а медиана - это отрезок, соединяющий вершину с серединой противолежащей стороны) . Утверждение доказано
1) ∠ADP=∠BCP=90, PA=PB, ∠P - общий
△PAD=△PBC (по гипотенузе и острому углу)
PD=PC
2) Внешний и внутренний углы вместе составляют развернутый угол, 180.
B=180-150=30
Катет против угла 30 равен половине гипотенузы, CB=2AC.
CB-AC=10 => AC=10 (см); CB=20 (см)