ответ угол NAM = 33
Объяснение:
Рассмотрим треугольник ABC
1) Углы при основании в равнобедренном треугольнике равны, следовательно угол A = углу B = (180 - 16) : 2 = 82
2) так как AN - биссектриса, следовательно угол BAN = углу NAC = 82 : 2 = 41
Рассмотрим треугольник ABN
1) Угол BAN = 41, угол B = 16, следовательно угол BNA = 180 - 41 -16 = 123
Угол ANM = 180 - 123 = 57, так как являются смежными
Рассмотрим треугольник ANM
1) угол ANM = 57, угол AMN = 90, так как AM - высота, следовательно угол NAM = 180 - 90 - 57 = 33 градуса
ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса.
ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС.
ΔАВО=ΔСВО , значит АВ=ВС=2,7 см.
Периметр равен 2(2,7+2,9)=2·5,6=11,2 см.
2) Обозначим длину сторон: х; х-8: х+8; 3(х-8).
По условию:
х+х-8+х+8+3(х-8)=66,
6х-24=66,
6х=90,
х=15.
Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см.
3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85°
Значит ∠АВD =180-85-30=65°.
∠АВС=∠АВD+∠СВD=65°+65°=130°.
Проведем другую диагональ АС.
ΔАВС по условию равнобедренный: АВ=ВС.
Значит углы при основании равны (180-130):2=25°.
∠САD=85-25=60°.
Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD.
Углы четырехугольника: 95°, 50°, 130°, 85°.