1.Один из смежных углов х°, другой (х+32)°Сумма смежных углов 180°х+(х+32)=1802х+32=1802х=180-322х=148х=7474+32=106ответ.74°; 106° 2. см. рисунок Вертикальные углы равны между собой. Один угол х° и второй тоже х° х+х=146 2х=146 х=73° Два смежных с ними 180°-73=107° ответ 73°;107°73°107°
3. см. рисунок х+х+180-х=202 х=202-180 х=22 ответ. 22°; 158°;22°
4. см. рисунок Один из данных углов х, второй 2х х:2х=1:2 Смежный с первым 5у, смежный со вторым 4у, 5у:4у=5:4 Сумма смежных углов 180° х+5у=180 ⇒ х=180-5у 2х+4у=180 ⇒ 2·(180-5у)+4у=180; 360-10у+4у=180; 6у=180 у=30°
5у=150° 4у=120° х=180°-150°=30° 2х=60° ответ. один угол 30°, второй угол 60° 30:60=1:2 смежный с первым 150° смежный со вторым 120° 150°:120°=5:4
<BAC=<DEC- это выполнялось бы . если треугольники были бы подобны и тогда CB=AB
Но по условию задачи AB>CB, поэтому <BAC≠<DEC
<DEC=<DCE=<ACB(последние 2 угла вертикальные, поэтому равны)
значит надо доказать что в ΔАВС <A меньше <ACB
по т синусов для треугольника АВС
AB/sin<ACB=CB/sin<A
так как AB>BC и синус угла-возрастает от 0 до 90 градусов, то
следует что делитель первой дроби больше делителя второй
Или sin<ACB больше sin<A-значит <ACB больше <A
и <CDE больше <BAC