Выберите правильный ответ из выпадающего списка. В ответе укажите цифру и букву верного утверждения без пробелов. Углы треугольника относятся как 2:2:5. Определите вид данного треугольника.
По углам
1) остроугольный
2) прямоугольный
3) тупоугольный
По сторонам
А разносторонний
В равнобедренный
С равносторонний
Опустив перпендикуляры из вершины P на остальные стороны ромба и рассмотрев полученные прямоугольные треугольники с общим катетом PH и противолежащим углом, равным 60o, докажем, что точка Hравноудалена от всех четырех прямых, содержащих стороны ромба ABCD. Поэтому H - центр окружности, вписанной в этот ромб, т.е. точка пересечения его диагоналей.
Опустим перпендикуляр BF из вершины ромба на сторону AD. Тогда BF= 2r. Из прямоугольного треугольника ABF находим, что AB = 2 . BF = 4r. Значит,
S(ABCD) = AD . BF . sin 30o = AB . BF . sin 30o= 8r2.
Из прямоугольного треугольника PMHнаходим, что
PH = HM . tg60o = r.
Следовательно,
V(PABCD) = S(ABCD) . PH = 8r2 . r = r3.