Так как отрезки РР₁ и ММ₁ перпендикулярны плоскости а, то указанные отрезки лежат на одной плоскости, а точка Р₁ лежит на отрезке КМ₁.
Рассмотрим ∆КРР₁ и ∆КММ₁.
Угол МКМ₁ – общий;
Угол КР₁Р=угол КМ₁М (оба прямые, так как РР₁ и ММ₁ перпендикулярны КМ₁)
Следовательно ∆КРР₁~∆КММ₁ по двум углам.
Пусть КР=n, тогда РМ=2n (из отношения КР:РМ=1:2), следовательно КМ=KP+PM=n+2n=3n.
Отношение двух любых сторон одного треугольника, равно отношению двух соответствующих сторон треугольника, подобного первому. Тогда:
ответ: 3 см
опольнительное построение: высоты, проведенные из точки D на основание АВ- отмечаем точку на основание как Е и из точки С на основание АВ, отмечаем эту точку как F
У нас получился прямоугольник DCFE. DC=FE=10см (потому что стороны DC и FE противолежащие)
AB=AE+EF+FB AE=FB (Треугольник НЕМ= треугольнику LPS по 2 признаку), следовательно FB= (24-10):2=7 см
Расмотрим треугольник ADE, угол DEA=90
Угол ADE=180-(90+60)=30
AE=1/2 AD( напротив угла 30 градусов), следовательно AD=AE*2 AD=7*2=14см
AD=CB=14см( ABCD равнобедренный)
P=DC+CB+AB+AD P=14+14+24+10=62см
ответ: периметр трапеции 62 см.
Объяснение: