точка а находится на одинаковом расстоянии от всех вершин равностороннего треугольника, => точка а проектируется в центр правильного треугольника.
найти длину перпендикуляра н.
центр правильного треугольника - точка пересечения медиан, высот, биссектрис, в которой они делятся в отношении 2: 3, считая от вершины.
высота h правильного треугольника вычисляется по формуле: h=a√3/2.
h=(4√3)*√3/2, h=6 см.
рассмотрим прямоугольный треугольник: катет - высота н, катет - (2/3)h=4 см, гипотенуза - расстояние от точки а до вершин треугольника =5 см.
по теореме пифагора: 5²=н²+4². н=3 см
ответ: расстояние от точки а до плоскости треугольника 3 см
Объяснение: Для прямоугольных треугольников должна выполняться теорема Пифагора - сумма квадратов катетов = квадрату гипотенузы. Гипотенуза в прямоугольном треугольнике самая большая сторона. Тогда имеем:
2) 11² +20² =? 25² т.е 121 + 400 = 521, 25² = 625. Прямоугольный треугольник такие стороны иметь не может, так как 521 ≠ 625
3) 18² + 24² =? 30² т.е. 324 + 576 = 900, 30² = 900. Такие стороны треугольник может иметь, так как условие теоремы Пифагора 18² + 24² = 30² выполняется.
4) 9² + 12² =? 15², т.е. 81 + 144 = 225, 15² = 225. Такие стороны треугольник может иметь, так как условие теоремы Пифагора 9² + 12² = 15² выполняется.
Условие задачи 1) не ясно. Решить нельзя.