ответ:Решение: В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой, и делит его на 2 равные части, одна из которых - треугольник АВМ. Следовательно АМ равно разности периметра треугольника АВМ и половины периметра треугольника АВС, а именно:
АМ=61,8-100/2=61,8-50=11,8 (см). Ведь, сумма сторон АВ и ВМ треугольника АВМ и есть половина периметра треугольника АВС. Остаётся одна - третья сторона АМ. Вот, её и нашли, как разность, описанную выше.
ответ: Медиана АМ = 11,8 см оцени Объяснение:
Найдите площадь равнобедренного треугольника, если его боковая сторона равна 2a, а угол при основании 2b
Объяснение:
1 cgjcj,
Площадь треугольника равна половине произведения двух сторон умноженная на синус угла между ними.
Тк. ΔАВС-равнобедренный ,то СА=СВ=2а и ∠А=∠В=2β ⇒∠АСВ=180°-4β
S=1/2*СА* СВ*sin∠АСВ , S=1/2*2а*2а*sin( π-4β)=2а²sin( π-4β) , S=2а²sin4β.
Пусть СН ⊥АВ , тогда АН=НВ по свойству равнобедренного треугольника . S=1/2*a*h, где а=АВ , h=СН
ΔАСН-прямоугольный , АС=2а, ∠А=2β
sin ∠A=CH/AC ⇒ h=2a*sin2β ; cos∠A=AH/AC⇒ AH=2a*cos2β , значит АВ=4а*cos2β.S=1/2*4acos2β*2asin2β= 2a²*2 cos2β*sin2β =2a²sin4β.
=================================
Формула приведения sin( π-α)=sinα