Дан треугольник АВС, углы А и С равны. Доказать, что треугольник равнобедренный.
Перевернем треугольник АВС. Получмим новый треугольник С1ВА1. Тоску С1 совместим с точкой А, луч С1А1 направим по лучу АС и совместим их. Треугольники АВС и С1ВА1 равны по стороне и двум прилежащим к ней углам. Но в равных треугольниках против равных углов лежат равные стороны. Против угла А лежит сторона ВС, а против угла С1 лежит сторона ВА1. Значит эти стороны равны, но ВА1 равна АВ значит АВ=ВС, треугольник имеет две равные стороны, значит он равнобедренный.
1)
О- центр окружности ⇒ середина АВ, Q - середина СD.
ОQ соединяет середины боковых сторон трапеции ⇒
OQ как средняя линия трапеции параллельна АD.
Т.к. трапеция равнобедренная, АО=DQ
Углы при основании равнобедренной трапеции равны, АО=НО ( радиусы), треугольник АОН - равнобедренный,∠ОНА=∠ОАН и равен углу QDH. Соответственные углы при пересечении прямых ОН и QD секущей АD равны, следовательно. ОН||QD.
Противоположные стороны четырёхугольника DQOH попарно параллельны, следовательно, DQOH — параллелограмм.
2)
Продолжим боковые стороны трапеции до пересечения в т.М. Углы при основании равнобедренной трапеции равны. Следовательно,
угол АМD=180°-2•75°=30°
Проведем ОК в точку касания. Радиус, проведенный в точку касания, перпендикулярен касательной.
∠ МКО=90°
В прямоугольном ∆ МОК катет ОК противолежит углу 30°, ⇒
гипотенуза МО=2ОК. Т.к. ОК=ОВ=R, МО=2 R.
Тогда MA=3R .
BC║OQ║AD ⇒ ∆BMC~∆ AMD. k=AM:BM=3 ⇒
AD=3BC=3 (ед. длины)