1. Рассмотрим треугольники, образованные соединением середин сторон треугольника. Они равны (по прямым углам и катетам). Значит гипотезы равны => у четырёхугольника все стороны равны. 2. Рассмотрим противолежащие углы образованного четырёхугольника. Они равны развёрнутому углу минус два равных угла, прилежащих к гипотенузе. Так как треугольники равны, то соответствующие углы равны, значит и противолежащие углы четырёхугольника равны. 3. Параллелограмм, у которого все стороны равны, является ромбом. Четырёхугольник, у которого противолежащие углы равны, является параллелограммом. Следовательно, четырёхугольник - ромб. Ч.т.д.
Проведем диагональ трапеции и рассмотрим образовавшиеся треугольники. Пара противоположных сторон ромба являются средними линиями этих треугольников, каждая из них параллельна этой диагонали и равна ее половине. Отсюда эта пара - равные и параллельные стороны, т.е. четырехугольник - параллелограмм. Аналогично другая пара противоположных сторон равны. А т.к.к трапеция равнобедренная, то ее диагонали равны. Значит все стороны четырехугольника равны. Таким образом, четырехугольник - параллелограмм с равными сторонами, т.е. ромб.
площадь основания равна произведению сторон на синус угла между ними, т.е. 7*10*1/2=35/см²/
Площадь боковой поверхности равна произведению периметра основания на высоту, т.е. (2*(7+10))*9=306/см²/
Площадь поверхности равна сумме двух площадей оснований и боковой поверхности, т.е. 2*35+306=70+306=376/см²/
Объем равен произведению площади основания на высоту. т.е.
35*9=315/см³/