ЧЕРТЁЖ В ПРИЛОЖЕНИИ
Дано: АВС - равнобедренный, АС - основание, ВD - биссектриса, угол СВА = 100°
Найти: углы DBA и BDA.
Решение: в равнобедренном треугольнике углы при основании равны, значит углы ВАС и ВСА равны. Найдем их численное значение. В треугольнике сумма углов = 180°. (180° - 100°) : 2 = 40°. По условию, ВD - биссектриса, значит углы АВD и DBC = 50° (100° : 2 (т.к. биссектриса делит угол пополам)). Теперь найдём угол ВDA. 180° (сумма углов треугольника) - 40° (угол А) - 50° (угол АВD) = 90.
Также угол ВDA можно было найти проще, зная, что в равнобедренном треугольнике биссектриса, проведенная к основанию, является также высотой и медианой. А углы, образованные при проведении высоты = 90°
ответ: угол DВА = 50°, угол ВDA = 90°.
[Удачи!]
ЧЕРТЁЖ В ПРИЛОЖЕНИИ
Дано: АВС - равнобедренный, АС - основание, ВD - биссектриса, угол СВА = 100°
Найти: углы DBA и BDA.
Решение: в равнобедренном треугольнике углы при основании равны, значит углы ВАС и ВСА равны. Найдем их численное значение. В треугольнике сумма углов = 180°. (180° - 100°) : 2 = 40°. По условию, ВD - биссектриса, значит углы АВD и DBC = 50° (100° : 2 (т.к. биссектриса делит угол пополам)). Теперь найдём угол ВDA. 180° (сумма углов треугольника) - 40° (угол А) - 50° (угол АВD) = 90.
Также угол ВDA можно было найти проще, зная, что в равнобедренном треугольнике биссектриса, проведенная к основанию, является также высотой и медианой. А углы, образованные при проведении высоты = 90°
ответ: угол DВА = 50°, угол ВDA = 90°.
[Удачи!]
Дано:
△BCA - равнобедренный.
CB = CA.
AB > в 4 раза, чем CB.
P = 90 дм.
Найти:
CB; AB; CA.
Пусть x дм - AB, тогда 4x дм - CB, CA (т.к. боковые стороны равны)
Периметр равен 90 дм.
Составление математической модели.
x + 4x + 4x = 90
Работа с математической моделью
9x = 90
x = 10
10 дм. - AB
CB = CA = 10 * 4 = 40 дм.
ответ: 10 дм; 40 дм; 40 дм.