Задание №1
Объяснение:
Пирамида SABCD. Апофема SH - высота треугольника SAB. O - точка пересечения диагоналей основания, SO - высота пирамиды.
1) Рассмотрим прямоугольный треугольник OHS. По теореме пифагора:
OH² = SH² - SO²
OH² = 4a² - 3a²
OH = a
По теореме Фалеса: BC = 2OH = 2a
Сторона основания 2a
2) SHO - линейный угол двугранного угла SABO. Найдя его, найдем и SABO, следовательно угол между боковой гранью и основанием.
Из прямоугольного треугольника SHO:
sin<SHO = SO/SH
sin<SHO = a√3/2a = √3/2
<SHO = 60°
Угол между боковой гранью и основанием 60°
3) S = Sбок + Sосн
В основании квадрат, значит Sосн = AB² = (2a)² = 4a²
Sбок = Pосн*SH/2
Pосн = 4*2a = 8a
Sбок = 8a*2a/2 = 8a²
S = 8a² + 4a² = 12a²
Площадь 12а²
4) Из точки О (это и есть центр основания) проводим перпендикуляр к апофеме SH, обозначаем H1. SH1 - расстояние от центра основания до плоскости боковой грани.
Из прямоугольного треугольника OH1H:
sin<SHO = OH1/OH
но sin<SHO = √3/2
√3/2 = OH1/a
OH1 = a√3/2
ответы: a; 60°; 12а²; a√3/2
62,5 т
Объяснение:
1) Переводим размеры на плане в действительные размеры.
В 1 см на карте, согласно условию задачи, 500 см. Значит:
а) длина улицы = 100 * 500 = 50 000 см, или
50 000 : 100 (т.к. в одном метре 100 см) = 50 метров;
б) ширина проезжей части улицы = 5 * 100 = 500 см;
500 : 100 = 5 метров.
2) Рассчитаем, чего равна площадь проезжей дороги в метрах квадратных. У нас прямоугольник 50 метров в длину и 5 метров в ширину. Площадь этого прямоугольника, который надо заасфальтировать, равна = 50 * 5 = 250 метров квадратных.
3) Т.к. на каждый метр квадратный дороги необходимо 250 кг асфальта, то 250 метров квадратных потребуется:
250 * 250 = 62 500 кг асфальта.
ответ лучше выразить в тоннах.
1 тонна - это 1000 кг.
62 500 : 1000 = 62,5 тонны - столько асфальта потребуется для того, чтобы заасфальтировать проезжую часть дороги длиной 50 метров и шириной 5 метров.
ответ: 62,5 т