Запишіть рівняння кола, в яке переходить коло (х+4)²+(у-6)²=16 а) при симетрії відносно початку координат б)при симетрії відносно осі абсцис в) при паралельному перенесенні на вектор
больше половины отрезка. получаем две точки их пересечения. 3. через эти точки проводим прямую до пересечения с первой окружностью. И соединяем эту точку с левой точкой нашей стороны. Это и будет поворот на 60 нашей стороны. 4.берем вторую сторону , измеряем ее длину из одной точки и измеряем расстояние от второго конца нашей первой стороны, которую мы уже повернули до дальнего края второй стороны. 5.от левого конца повернутой стороны строим две окружности измеренных радиусов и в точке их пересечения получаем второй конец второй стороны. 6. И т. д. с каждой стороной.
Точки А (-5;-4), В (-4;3), С (-1;-1) являются вершинами треугольника АВС. докажите, что треугольник АВС равнобедренный. Длина стороны |АВ| = √((Bx - Ax)² + (By - Ay)²) = √((-4 - (-5))² + (3 - (-4))²) = √50 = 5√2 ≈ 7.07; Длина стороны |ВC| = √((-1 - (-4))² + (-1 - 3)²) = 5; Длина стороны |CA| = √((-5 - (-1))² + (-4 - (-1))²) = 5; |ВC| = |CA| Это значит, что треугольник АВС равнобедренный; составьте уравнение окружности, имеющий центр в точке С и проходящий через точку В. Принадлежит ли окружности точка А? центр в точке С (-1;-1); радиус 5; уравнение окружности; (x+1)²+(y+1)²=5²; проверяем: принадлежит ли окружности точка А; подставляем её координаты в уравнение; ((-5)+1)²+((-4)+1)²=5²; 25 = 25; точка А принадлежит окружности; найдите длину медианы, проведенной к основанию треугольника. Найдем точку F - середина стороны AB: Fx = (-5 + (-4))/2 = -4.5; Fy = (-4 + 3)/2 = -0.5; F (-4.5; -0.5); С (-1;-1); Длина медианы CF: |CF| = √((-3.5)²+0.5²) = √12.5 = 5/√2 ≈ 3.54; составьте уравнение прямой, проходящей через точки А и С. уравнение прямой АС: (x+1)/4 = (y+1)/3; y = 3x/4 - 3/4;
3. через эти точки проводим прямую до пересечения с первой окружностью. И соединяем эту точку с левой точкой нашей стороны. Это и будет поворот на 60 нашей стороны.
4.берем вторую сторону , измеряем ее длину из одной точки и измеряем расстояние от второго конца нашей первой стороны, которую мы уже повернули до дальнего края второй стороны.
5.от левого конца повернутой стороны строим две окружности измеренных радиусов и в точке их пересечения получаем второй конец второй стороны.
6. И т. д. с каждой стороной.