1)Треугольник МNK- равнобедренный.
Значит, углы при его основании равны => <NMK=<NKM=60°.
2)NP- медиана равнобедренного треугольника MNK, а значит, является одновременно биссектрисой и высотой. =>
3)Биссектриса NP делит угол N пополам. Поскольку угол N=60° (Сумма углов треугольника равна 180° => N = Треугольник MNK-M-K =180°-60°-60° = 60°), то <PNM= <PNK=30°.
4) NP - высота, а значит <NPM= <NPK=90°
Из этого следует, что треугольник NPK= <NPK+<PNK+<NKP= 90°+60°+30°
V= (1/3)*π*6²*2√3 =24√3*π.
Объяснение:
Объем конуса равен V=(1/3)So*H, где So - площадь основания, Н - высота конуса. Расстояние от центра основания конуса до образующей равно 3 см - это высота ОP из прямого угла к образующей.
В нашем случае радиус основания конуса R=6 см (катет ОР против угла 30 градусов в треугольнике ОАР). Высота конуса Н=2√3 см (гипотенуза SO в треугольнике SOР равна Н=ОН/Sin60 = 3/(√3/2) = 2√3).
V= (1/3)*π*6²*2√3 =24√3*π.