У октаэдра 8 граней - равносторонних треугольников.
Площадь полной поверхности правильного октаэдра с длиной ребра a равна S = 8*(a²√3/4) = 2√3a².
Приравняем заданному значению: 18√3 = 2√3a², a² = 9, а = 3.
Нашли длину ребра: а = 3.
Объем равен удвоенному объему правильной четырехугольной пирамиды . Основанием пирамиды является квадрат со стороной a, а высота пирамиды равна длине отрезка AO.
АО = √(a² - (a√2/2)²) = √(a² - (2a²/4)) = a/√2.
Объём V = 2*((1/3)*a²*(a/√2)) = a³√2/3.
Подставим а = 3.
Тогда V = 3³√2/3 = 9√2.
середина B_1 стороны AC - (1;0), середина A_1 стороны BC - (3;2).
Будем искать уравнения медиан в виде y=kx+b (уравнение прямой с угловым коэффициентом). Подставляя в это уравнение координаты точек A и A_1. найдем уравнение медианы AA_1. Аналогично поступаем с медианами BB_1 и CC_1.
В первом случае получаем систему уравнений относительно k и b
0= - 2k+b; 2=3k+b⇒k=2/5; b=4/5⇒ уравнение медианы AA_1 имеет вид
y=2x/5+4/5
Аналогично получаем уравнения медианы BB_1: y=4x-4
и медианы CC_1: y= - x/2+2