5) Периметр квадрата со стороной AM равен 4AM.
4AM=2BC <=> AM=BC/2
Отрезок из прямого угла к гипотенузе, равный ее половине - медиана.
AM - медиана и высота, следовательно △ABC - равнобедренный, острые углы 45.
6) Продолжим перпендикуляр BO до пересечения с AD в точке P.
OBM= 90-OMB =BCM
△ABP=△BCM (по катету и острому углу)
AP=BM=BN => PD=NC
PNCD - прямоугольник, диагонали являются диаметрами описанной окружности.
COP=90, точка O лежит на окружности с диаметром CP.
Вписанный угол NOD опирается на диаметр ND, NOD=90
АВС - равнобедренный, уголАСВ опирается на диаметр АВ => уголАСВ=90°
Треугольник АСВ прямоугольный
Найдём катеты по теореме Пифагора
Площадь прямоугольного треугольника равна полупроизведению катетов
Sacb=(10*10)/2=50
Площадь окружности 'пи'*R^2
R=AB/2=
Sокруж=3,14*(5корней2)^2=157
Площадь заштрихованной части равна площади окружности минус площадь треугольника
Sзашт=157-50=107
ответ: 107