В треугольнике AB:угол C=60 градусов, угол B=90 градусов, Высота BB1=2см, НАЙДИТЕ AB 2)треугольник MNP-остроугольный. Биссектриса угла M пересекает высоту MH в точке O, причём OH=9см. Найдите расстояние от точки O до прямой MN
I. Верно ли , что всякая теорема имеет обратную ? Нет ( например , теорема о сумме смежных углов не имеет обратной ) 2 , можно ли найти два смежных угла , сумма которых равна 360 " ? Нет ( по соответствующеи теореме , сумма двух любых смежных углов равна 90°) З. Существует ли треугольник , у которого два прямых угла ? Нет ( если бы у некого треугольника было бы два прямых угла , то по теореме о сумме углов треугольника на два других приходилось бы о " , что невозможно по аксиоме об измерении углов ) 4. Верно ли , что у равностороннего треугольника все стороны равны ? Да ( по определению равностороннего треугольника ) 5. Действительно ли у всякого треугольника есть три вершины ? Да ( по определению треугольника ) 6. Верно ли , что аксиомы необходимо доказывать ? Нет ( аксиома - утверждение , не требующее доказательств ) 7.Действительно ли сумма двух внутренних односторонних углов при параллельных прямых и секущей равна 1807 Да ( по свойству углов , образованных при пересечении параллельных прямых секущей ) 8. Верно ли , что перпендикулярные прямые пересекаются под прямым углом : да ( по определению перпендикулярных прямых ) . 9.Действительно ли угол , образованный касательной и радиусом , проведенным в точку касания , равен 90 " ? Да ( по определению касательной ) 10. Верно ли , что всякие смежные углы равны ? Нет ( будут равны лишь те смежные углы , каждый из которых равен 90°.
Правильный прямоугольник - многоугольник с равными сторонами - это квадрат. Центром окружности, описанной около прямоугольника , является точка пересечения его диагоналей. Сами диагонали являются диаметрами описанной окружности, а их половинки - радиусами. Кроме того, Диагональ квадрата является гипотенузой прямоугольного треугольника, которая делится центром окружности пополам. Гипотенузу можно найти по теореме Пифагора : суммая квадратов катетов равна квадрату гипотенузы. Обозначим гипотенузу D. D*2= 10*2+10*2=200 D=√200, R= 10√2 / 2