Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Объяснение:
1. Найдите площадь треугольника, стороны которого равны 3 см, 7
см и 8 см.
По формуле Герона S=√р(р-а)(р-в)(р-с).
Найдем полупериметр р=(3+7+8):2=9
р-а=9-3=6
р-в=9-7=2
р-с=9-8=1
S=√(9*6*2*1)=6√3.
3. Основа равнобедренного треугольника равна 70 см, а боковая
сторона – 37 см. Найдите радиус круга, описанного вокруг
треугольника.
Центр -лежит вточке пересечения серединных перпендикуляров.
R=(авс)/(4S)
S=1/2*АС*ВН, ВН-высота к основанию АС.
Высота в равнобедренном треугольнике является медианой АН=35см.
ΔАВН-прямоугольный . По т. Пифагора ВН=√(37²-35²)=√(1369-1225)=√144=12(см)
S=1/2*70*12=420 (см²).
R=(авс)/(4S), R=(70*37*37)/(4*420)=1369/24=57 1/24 (см)