если нижнее основание а, верхнее b, и искомый отрезок - длины х, то прощади трапеций будут такие
S1 = (b + x)*h1/2; S2 = (a + x)*h2/2;
или, поскольку S1 = S2,
(b + x)/(a + x) = h2/h1;
Чтобы получить соотношение между h1 и h2, проведем прямую, параллельную боковой стороне через конец отрезка х, лежащий на ДРУГОЙ боковой стороне.
Малое основание продолжим до пересечения с этой прямой. Получилось 2 подобных треугольника с основаниями (x - b) и (a - x); из подобия следует
h2/h1 = (a - x)/(x - b);
поскольку соответствующие высоты так же пропорциональны, как и стороны.
Итак, имеем уравнение для х
(b + x)/(a + x) = (a - x)/(x - b);
x^2 - b^2 = a^2 - b^2;
x = корень((a^2 + b^2)/2);
Подставляем численные значения, получаем
х = корень(24^2 + 7^2) = 25;
Надо же, и тут Пифагорова тройка (7,24,25)
1)
В прямоугольном треугольнике катет лежащий против угла в 30° равен половине гипотенузы. Значит СК = 39,2 см ( т.к. катет 19,6).
2)
Пусть первый угол х°, тогда второй угол (х + 25)°
Сумма острых углов в прямоугольном треугольнике равна 90°
Составим и решим ур-е:
х + х + 25 = 90
2х + 25 = 90
2х = 90 - 25
2х = 65
х = 32,5
Значит , первый угол = 32,5°, а второй = 32,5 + 25 = 52,5°
3) В прямоугольном равнобедренном треугольнике, высота проведённая к гипотенузе является медианой и биссектрисой.
Значит высота равна 115 : 2 = 57,5 (см)