М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gamegame2006
gamegame2006
22.09.2022 05:51 •  Геометрия

Один из углов прямоугольного треугольника равен 30 градусов, а разность гипотенузы и меньшего катета равна 15 см. Найдите гипотенузу и меньший катет

👇
Ответ:

Против угла в 30° лежит катет, равный половине гипотенузы. Пусть этот катет будет х см. Тогда гипотенуза 2х

Составим уравнение:

2х-х=15

х=15

Значит, меньший катет 15 см.

15+15=30 см - гипотенуза

ответ: 15 см и 30 см

4,4(16 оценок)
Открыть все ответы
Ответ:
Danila240899
Danila240899
22.09.2022

В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.


Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.


Средняя линия равна 16, следовательно, сумма оснований равна
ВС+АD=16·2=32
Большее основание равно
AD=32-BC=32-6=26
Отрезок НD- меньший из двух,  на которые высота делит основание АД.
Полуразность оснований равна
HD=(26-6):2=10
ответ: Отрезок HD=10

4,5(62 оценок)
Ответ:
pavelvladlem
pavelvladlem
22.09.2022
1)прямая - линия не имеющая начала и конца 
отрезок-линия имеющая начала и конец 
луч- линия имеющая начала ,но не имеющая конец  
2)  Две прямые, образующие при пересечении прямые углы, называют перпендикулярными.  Пусть ÐАВС и ÐCBD – данные смежные углы . Так как лучи ВА и BD образуют развернутый угол, то ÐАВС+ÐCBD =180°.Теорема доказана.Можно найти величину одного из смежных углов, если известна величина другого угла. Например, ÐАВС =72°, величина смежного ему угла будет равна 180°- 72°=108°.Каждое утверждение, справедливость которого устанавливается путем рассуждений, называется теоремой, а сами рассуждения называются доказательством теоремы. Мы доказали первую теорему о смежных углах.Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.На рисунке 26 углы ÐEOF и ÐAOC, а также углы ÐAOE и ÐCOF – вертикальные. Потому что сторона ОА является продолжением луча OF, а сторона OC является продолжением луча OE и дополняет до прямой.
3) Первый признак равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.Доказательство. Рассмотрим два треугольника ABC и A1B1C1.Пусть в этих треугольниках равны стороны AB и A1B1,BC и B1C1,а угол ABC равен углу A1B1C1.Тогда треугольник A1B1C1 можно наложить на треугольник ABC так, чтобы угол A1B1C1 совпал с углом ABC.При этом можно расположить треугольник A1B1C1 так, чтобы сторона А1В1 совпала со стороной АВ, а сторона B1С1 - со стороной BС. (В случае необходимости вместо треугольника A1B1C1 можно рассматривать равный ему "перевернутый" треугольник, т. е. треугольник, симметричный A1B1C1 относительно произвольной прямой .)
Второй признак равенства треугольниковЕсли сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.Доказательство. Пусть в треугольниках АВС и А 1 В 1 С 1 имеют место равенстваAB= A1B1,ÐBAC = ÐB1A1C1,ÐАВС= ÐА1В1С1.Поступим так же, как и в предыдущем случае. Наложим треугольник А1В1С1 на треугольник АВС так, чтобы совпали стороны AB и A1B1и прилегающие к ним углы.  Как и в предыдущем случае, при необходимости треугольник А1В1С1 можно "перевернуть обратной стороной". 

Тогда треугольники совпадут полностью. Значит, они равны. t Третий признак равенства треугольниковЕсли три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.Доказательство. Пусть для треугольников ABC и A1B1C1
имеют место равенства АВ = А1В1,
ВС = В1С1,
СА = С1А1.
Перенесем треугольник А1В1С1 так, чтобы сторона А1В1 совпала со стороной АВ, при этом должны совпасть вершины A1 и A, B1 и B. 
Рассмотрим две окружности с центрами в A и B и радиусами соответственно AC и BC.
Эти окружности пересекаются в двух симметричных относительно AB точках: C и C2. Значит, точка C1 после переноса указанным образом треугольника A1B1C1 должна совпасть либо с точкой C, либо с точкой C2. 
В обоих случаях это будет означать равенство треугольников ABC и A1B1C1, поскольку треугольники ABC и ABC2 равны (эти треугольники симметричны относительно прямой AB.)
4,6(48 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ