М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vyzgavalja1956
vyzgavalja1956
14.10.2021 20:58 •  Геометрия

В треугольнике АВС сторона АВ=5, ВС=6, СА=7, тогда синус угла А равен... ​

👇
Ответ:
vika160805v
vika160805v
14.10.2021

По теореме косинусов:

BC^2 = AB^2 + AC^2 - 2*AB*AC*cos(BAC)

36 = 25 + 49 - 2*5*7*cos(BAC)

cos(ABC) = 19/35

Тогда sin(ABC) = √(1 - 361/1225) = √(864/1225) = 12*(√6)/35

Объяснение:

4,5(23 оценок)
Открыть все ответы
Ответ:
DANILADEMON
DANILADEMON
14.10.2021
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
4,7(69 оценок)
Ответ:
Linarikkomarik
Linarikkomarik
14.10.2021
1.

В тр-ках ABC и ACD опустим перпендикуляры на сторону AC. Очевидно, они упадудт в одну точку, т. к. тр-ки равнобедренные. Назовем эту точку H. В тр-ке BDH угол BDH - прямой (т. к. BD перпендикулярна плоскости ACD).

Найдем BH: в тр-ке ABC по т-ме Пифагора BH^2+6^2=4*21; BH=4*sqrt(3) //sqrt - это знак корня, т. е. 4 корня из трех.

Найдем AD: в тр-ке ADC по т-ме Пифагора 2*AD^2=12^2; AD=6*sqrt(2). //Не забываем, что AD=AC.

Найдем DH исходя из площади тр-ка ADC: DH*12=AD*AC; DH*12=36*2; DH=6.

В прямоугольном тр-ке BDH (угол BDH - прямой) гипотенуза равна 4*sqrt(3), а катет HD=6. Отсюда угол BHD=arccos(6/(4*sqrt(3))=arccos(sqrt(3)/2)=pi/6=30градусов.

ответ: 30 градусов.

2. Поступаем аналогично 1-й задаче: вначале опускаем перпендикуляры BH и DH на сторону AC.
Далее по т-ме Пифагора находим DH:

DH^2=6^2+61; DH=sqrt(97)
Далее по т-ме Пифагора находим BH:
BH^2=10^2+6^2; BH=2sqrt(34).

Отсюда по т-ме косинусов в тр-ке DBH считаем BD:

BD^2=(2sqrt(34)^2+sqrt(97)^2-2*2sqrt(34)*sqrt(97)*cos(60))=
BD^2=136+97-2*sqrt(3298)=233-2sqrt(3298).

Далее можно упростить при желании.

Проверьте на всякий случай арифметику.
4,6(94 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ