1. полупериметр 50/2=25, одна из сторон АВ=СD=10cм⇒две другие BC=AD=25-10=15/см/
ответ 10 см, 15 см.
2. задача задана некорректно, если угол А равен 36° , то угол В равен 90°, т.к. угол С равен 117°, но угол С равен не 117°, а 90°, и тогда угол D равен 117°. Если бы в задаче была трапеция АВDС, то корректность условия была бы налицо.
Если бы не было именованных сторон, т.е. указали бы два угла острый и тупой, но даже если бы выполнялись эти все условия. задача все равно некорректна, т.к. сумма углов четырехугольника равна 360°, два угла прямых, это 180°, а сумма двух других 117°+36°≠180°
3. периметр - это сумма всех сторон. у квадрата они равны. поэтому периметр равен 4*4=16/см/
4. Т.к. ∠В=60°, то в ΔАВС углы А и С тоже по 60°, ΔАВС- равносторонний. т.е. сторона ромба равна диагонали АС, 10.5см, а его периметр 10.5*4=42/см/
5. О- точка пересечения диагоналей. т.к. диагонали параллелограмма, пересекаясь, делятся точкой пересечения пополам, поэтому противолежащие вершины параллелограмма находятся на одинаковом расстоянии от точки пересечения диагоналей, а потому О- центр симметрии. Доказано.
Явная опечатка. не 1 см, а 11 см. т.к. с такими данными не существует треугольника. исправьте условие.
теперь решение.
Если соединить середины сторон данного треугольника, то получите треугольник, состоящий их средних линий данного треугольника.
Каждая средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны, поэтому стороны треугольника, вершинами которого являются середины сторон данного треугольника, будут 5/2=2.5/см/, 7/2=3.5/см/, 11/2=5.5/см/
ответ 2.5см, 3.5 см, 5.5 см.
Пусть AC=x, тогда в ΔABC по формуле Герона:
Решим квадратное уравнение относительно x².
Далее немного вычислений, и зная, что x>0, как сторона треугольника, получим:
Пусть KL=a, KN=b.
Рассмотрим случай, когда AC=44.
В ΔABC по теореме косинусов:
По формуле связи косинуса и тангенса:
В прямоугольных треугольниках AKL и CNM выразим AK и CN через a, основываясь на определении тангенса острого угла в прямоугольном треугольнике.
AK=8a/15; CN=12a/5
AC=AK+KN+NC=(44a/15)+b=44
P(KLMN)=2a+2b=59
Составим систему и определим S(KLMN)=ab
b=(59-15)/2=22
ab=7,5·22=165
Теперь всё тоже самое только AC=2√421.
В ΔABC по теореме косинусов:
По формуле связи косинуса и тангенса:
AK=113a/330; CN=243a/110
AC=AK+KN+NC=(421a/330)+b=2√421
P(KLMN)=2a+2b=59
Заметим, что проекция AB на AC равна AB·cosA=113/√421
Получается, что AK= > 113/√421.
Таким образом при АС=2√421 картинка другая, которая не удовлетворяет условию задачи.
ответ: 165.