М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nadjanikiforovp0bx40
nadjanikiforovp0bx40
26.07.2022 12:10 •  Геометрия

Из вершины с квадрата abcd проведен перпендикуляр co=8см. найдите расстояние от точки о до прямых bd, ab, ad, если сторона квадрата 6см.

👇
Ответ:
karnastia
karnastia
26.07.2022

квадрат АВСД перпендикуляр СО- это продолжение стороны ВС

от О до  ВД расстояние-это перпендикуляр от точки О к прямой ВД

cos угла ДВС = ОД\ВО

cos45=ОД\14

ОД=7корней из 2

от О до АВ = 6+8=14

от О до АД =6

4,6(8 оценок)
Открыть все ответы
Ответ:
MaxymMelehovets
MaxymMelehovets
26.07.2022
V=S(осн)*h/3
в основании квадрат-необходимо найти сторону основания, и высоту пирамиды
На чертеже диагональное сечение-ΔBDS, по условию он прямоугольный(<S=90) и равнобедренный(потому что пирамида правильная)
 Его S=12=a^2/2(a-боковое ребро пирамиды), значит а=√24=2√6
DB-гипотенуза прямоугольного треугольника со стороной а, поэтому
DB^2=2a^2=2*24=48; DB=4√3
DB-диагональ квадрата в основании, поэтому сторона основания AB=DB/√2=4√3/√2=2√6
S(осн)=AB^2=(2√6)^2=24
Из ΔDSO найду h, h^2=a^2-(DB/2)^2=24-(2√3)^2=24-12=12
h=√12=2√3
V=24*2√3/3=16√3

Диагональное сечение правильной четырёхугольной пирамиды является прямоугольный треугольником, площа
4,8(19 оценок)
Ответ:
V=S(осн)*h/3
в основании квадрат-необходимо найти сторону основания, и высоту пирамиды
На чертеже диагональное сечение-ΔBDS, по условию он прямоугольный(<S=90) и равнобедренный(потому что пирамида правильная)
 Его S=12=a^2/2(a-боковое ребро пирамиды), значит а=√24=2√6
DB-гипотенуза прямоугольного треугольника со стороной а, поэтому
DB^2=2a^2=2*24=48; DB=4√3
DB-диагональ квадрата в основании, поэтому сторона основания AB=DB/√2=4√3/√2=2√6
S(осн)=AB^2=(2√6)^2=24
Из ΔDSO найду h, h^2=a^2-(DB/2)^2=24-(2√3)^2=24-12=12
h=√12=2√3
V=24*2√3/3=16√3

Диагональное сечение правильной четырёхугольной пирамиды является прямоугольный треугольником, площа
4,6(2 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ