Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1.
Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1.
Так как A1B1=A1B2, то вершины B1 и B2 совпадают.
Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2.
Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.
В треугольнике ABC ∠C = 120°, CK—биссектриса.
Доказать, что 1 / CK = 1 / AC+1 / BC. || 1 / lc = 1 / a + 1 / b ||
- - - - - - - - - - - - - - - - - - - - - - - - - - -
CK = 2*AC*BC*cos(∠ACB /2) / (AC+BC)
CK= 2*AC*BC*cos(120°/2) / (AC + BC) || cos60° =1 /2 ||
CK= AC*BC / (AC+BC) ⇔ 1 / CK = (AC+BC) / AC*BC
1 / CK = AC / AC*BC + BC / AC*BC
1 / CK = 1 / AC+ 1 / BC ч. т. д.
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
* * * P.S. ∠ACB = ∠C ; ACK =∠BCK =∠ ACB /2 = ∠C /2
CK = Lc = 2abcos(∠C/2) / (a+b) * * *
действительно :
S(ΔACB) =S(ΔACK) + S(ΔBCK) ;
(1/2)*AC*BC*sin∠C=(1/2)*AC*CK*sin(∠C/2) + (1/2)*BC*CK*sin∠C/2)
(1/2)*AC*BC*sin∠C =(1/2)*CK*sin(∠C/2) *(AC + BC)
* * * ! sin2α = 2sinα*cosα * * *
* * * sin∠C = sin(2*∠C/2) = 2sin(∠C/2)*cos(∠C/2) * * *
2AC*BC*cos(∠C/2) = CK* (AC + BC) ;
CK =2AC*BC*cos(∠C/2) / (AC+BC) || Lc=2abcos(∠C/2)/(a+b) ||