Пусть M — середина гипотенузы AB, N — середина катета BC, K — точка касания данной окружности с прямой AC, P — середина средней линии MN треугольника ABC. Перпендикуляр к AC, проведённый через точку K, проходит через центр окружности и делит пополам перпендикулярную ему хорду MN, т.е. проходит также через точку P. Тогда
Обозначим прямоугольник АВСД. Диагональ АС. На неё из вершины В опущен перпендикуляр ВК, и по условию АК=9, КС=16. ВК это общая высота в прямоугольных треугольниках АВК и СВК. Отсюда по теореме Пифагора АВ квадрат-АК квадрат=ВС квадрат-КС квадрат. Или АВ квадрат-81=ВС квадрат-256. Отсюда ВС квадрат=АВ квадрат+175. В треугольнике АВС также АВ квадрат+ ВС квадрат= АС квадрат. Или АВ квадрат+ВС квадрат=(9+16)квадрат. АВ квадрат+ ВС квадрат=625. Подставим сюда ранее найденное выражение для ВС квадрат и получим АВ квадрат+(АВ квадрат+175)=625. Отсюда АВ=15. ВК=корень из(АВ квадрат-АК квадрат)=корень из(225-81)=12. Искомый тангенс угла ВАК, tg=ВК/АК=12/9=4/3.
A. Продлим медиану АМ до пересечения с продолжением стороны ВС трапеции. Треугольники АМD и СMQ подобны по двум углам (<MCQ=<MDA как накрест лежащие при параллельных BQ и AD, <CMQ =<AMD как вертикальные). Из подобия имеем: CQ/AD=СM/MD=1 (так как СМ=MD - дано). Итак, CQ=AD. Тогда BQ=BC+CQ. Но BC=(1/3)*AD (дано), а CQ=AD (доказано выше). Следовательно, BQ=(1/3)*AD+AD, отсюда 3BQ=4AD. BQ/AD=4/3. Треугольники АРD и ВРQ подобны по двум углам (<РВQ=<РDA как накрест лежащие при параллельных BQ и AD и секущей BD, <ВРQ =<AРD как вертикальные). Из подобия имеем: ВР/PD=ВQ/AD=4/3. Что и требовалось доказать.
В. Площадь трапеции АВСD Sabcd=(BC+AD)*BH/2=(2/3)AD*BH. Площадь треугольника AMD равна Samd=(1/2)*AD*PH. Площадь треугольника ABD равна Sabd=(1/2)*AD*BH. Площадь треугольника AMD равна Samd=(1/2)*AD*MK. Но МК=(1/2)*ВН (из подобия треугольников AMD и CMQ). Значит Samd=(1/4)*AD*ВН. Площадь треугольника AРD равна Saрd=(1/2)*AD*РТ. Но РТ=(3/7)*ВН (из подобия треугольников AMQ и APD). Значит Saрd=(3/14)*AD*ВН. Площадь треугольника РМD равна Spmd=Samd-Sapd=(1/4-3/14)*AD*ВН =(1/28)*AD*ВН Sbcmp=Sabcd-Sabd-Spmd=(2/3-1/2-1/28)AD*BH = (11/84)*AD*BH. (2/3)AD*BH=56 (дано). Тогда AD*BH=84. Sbcmp=(11/84)*84=11.
Пусть M — середина гипотенузы AB, N — середина катета BC, K — точка касания данной окружности с прямой AC, P — середина средней линии MN треугольника ABC. Перпендикуляр к AC, проведённый через точку K, проходит через центр окружности и делит пополам перпендикулярную ему хорду MN, т.е. проходит также через точку P. Тогда
CK = NP = MN = . AC = AC.Следовательно, CK : AK = 1 : 3.