Есть два решения этой задачи - стандартное и на сообразительность.
Начну со второго. Учитывая, что расстояние между домами равно сумме высот дома и фонаря, нужного результата мы добьемся, если рассыпем зёрна на расстоянии 6 метров от дома. Тогда катеты левого прямоугольного треугольника равны 8 и 6 метров, правого - 6 и 14-6=8 метров. То есть эти треугольники равны, а тогда у них равны гипотенузы, чего и нужно было добиться.
Первый Если расстояние от первого дома равно x, то квадрат гипотенузы левого треугольника равен 8²+x², а квадрат гипотенузы правого треугольника равен 6²+(14-x)²; а поскольку гипотенузы по условию должны быть равны, получаем уравнение
64+x²=36+196-28x+x²; 28x=168; x=6
Объяснение:
625=х^2+x^2+10x+25
2x^2+10x-600=0
x^2+5x-300=0
x=15 (см.) - розмір одного катета. x=-20 не задовільняє задачу.
20 см. - розмір іншого катета.
Звідси периметр становить 45+15=60 (см.)
б). х - коэфіціент пропорційності.
За т. Піфагора: корінь із 9х^2+16х^2=корінь із 25х^2=5x - гіпотенуза трикутника.
Звідси периметр становить: 7х+5x=60
12х=60
х=5
Отже гіпотенуза становить 5х=5*5=25.