М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Один из концов отрезка АВ, точка В, удалён от плоскости a на 9 см, а его середина М – на 4 см. Найти расстояние от точки А до плоскости a, если отрезок АВ пересекает плоскость a

👇
Открыть все ответы
Ответ:
sotlen61Ang
sotlen61Ang
07.04.2022
Диагональ правильной четырёхугольной призмы равна а и образует с 
плоскостью боковой грани угол 30°. Найти:
а) сторону основания 
призмы. 
б) угол между диагональю призмы и плоскостью основания
в) площадь боковой поверхности призмы. 
г) площадь сечения призмы плоскостью, проходящей через диагональ основания параллельно диагонали призмы.

В основаниях правильной призмы - правильные многоугольники, а боковые грани - прямоугольники. Следовательно,  ее боковые ребра перпендикулярны основанию. 
Треугольник ВD1А - прямоугольный (в основании призмы - квадрат,  и ребра перпендикулярны основанию.
а) Сторона основания противолежит углу 30°, поэтому АВ=а*sin 30=a/2
б) угол между диагональю призмы и плоскостью основания - это угол между диагональю ВD1 призмы и диагональю  ВD основания.
ВD  как диагональ квадрата равна а√2):2
cos D1BD=BD:BD1=( а√2):2):a=(√2):2), 
и это косинус 45 градусов. 
в) площадь боковой поверхности призмы находят произведением высоты на периметр основания:
S бок=DD1*AB= (а√2):2)*4*a/2=a²√2
г) Сечение призмы, площадь которого надо найти,  это треугольник АСК.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. Верным является и обратное утверждение. 
Высота КН  - средняя линия прямоугольного треугольника BDD1. Она параллельна диагонали призмы, а само сечение проходит через диагональ АС  основания. 
S Δ(АСК)=КН*СА:2
SΔ (АСК)=(0,5а*а√2):2):2=(а²√2):8
1. диагональ правильной четырехугольной призмы равна 6 см и образует с плоскостью основания угол 30
4,7(21 оценок)
Ответ:
Valinka9999
Valinka9999
07.04.2022
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. 
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. 
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. 
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. 
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Вравнобедренный треугольник abc с основанием ас вписана окружность, которая касается боковой стороны
4,4(13 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ