М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
круто45
круто45
23.03.2020 15:45 •  Геометрия

В окружности с радиусом 10 см проведена хорда длиной 10 см. Чему равны длины стягиваемых ею дуг?
Найти площадь сектора

👇
Ответ:
guldana14
guldana14
23.03.2020

ответ:   l_1=\dfrac{10\pi }{3}\; \; ,\; \; l_2=\dfrac{50\pi }{3}\; ,   S=\dfrac{25\cdot (2\pi -3\sqrt3)}{3}\; .  

Объяснение:

Так как длина хорды АВ = радиусу окружности R=OA=OB, то ΔAOB - равносторонний и все его углы = 60° .

Значит центральный угол АОВ=60°. Тогда длина дуги АВ равна

l_1=\dfrac{\pi R\cdot \alpha }{180^\circ }=\dfrac{\pi \cdot 10\cdot 60^\circ }{180^\circ }=\dfrac{10\pi }{3}  

Длина второй дуги АСВ окружности равна

l_2=\dfrac{\pi \cdot R\cdot (360^\circ -60^\circ )}{180^\circ }=\dfrac{\pi \cdot 10\cdot 300^\circ }{180^\circ }=\dfrac{50\pi }{3}  

Площадь сегмента, соответствующего углу в 60° равна:

S=\dfrac{R^2}{2}\Big (\dfrac{\pi \alpha}{180^\circ }-sin\alpha \Big)=\dfrac{100}{2}\Big(\dfrac{\pi \cdot 60^\circ }{180^\circ}-\dfrac{\sqrt3}{2}\Big)=50\cdot \Big(\dfrac{\pi}{3}-\dfrac{\sqrt3}{2}\Big)=\\\\=\dfrac{25\cdot (2\pi -3\sqrt3)}{3}

4,8(42 оценок)
Открыть все ответы
Ответ:
нурбол5
нурбол5
23.03.2020
№1 - площадьАВСД=1/2АС*ВД*sin30=1/2*3*4*1/2=3, №2 трапеция АВСД, АВ=СД, уголА=уголД, ВС=10, АД=40, круг можнов писать в трапецию кода сумма оснований=сумме боковых сторон -АВ+СД=ВС+АД, 2АВ=10+40, АВ=СД=50/2=25, проводим высоты ВН и СК на АД, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК-прямоугольник ВС=НК=10, АН=КД=(АД-НК)/2=(40-10)/2=15, треугольник АВН , ВН=корень(АВ в квадрате-АН  в квадрате)=корень(625-225)=20=диаметр вписанной окружности , радиус=20/2=10, длина окружности=2пи*радиус=2*10пи=20пи  №3 треугольник АВС, полупериметр (р)=(7+6+3)/2=8, площадьАВС=корень(р*(р-АВ)*(р-ВС)*(р-АС))=корень(8*1*2*5)=корень80=4*корень5 №4 треугольник АВС, АВ=12, ВС=9, Ас=7, ВН-биссектриса, АН=х, НС=7-х, АН/НС=АВ/ВС, х/7-х=12/9, 84-12х=9х, х=4=АН, НС=7-4=3, ВН=корень(АВ*ВС-АН*НС)=корень(12*9-4*3)=4*корень6  №6 площадьАВС=1/2АВ*АС*sinA=1/2*7*9*4/9=14  №7, треугольник АВС, уголС=90, АС=10, cosB=12/13, sinB=корень(1-cosB в квадрате)=корень(1-144/169)=5/13, АВ=АС/sinB=10/(5/13)=26, ВС=корень(АВ в квадрате-АС в квадрате)=корень(676-100)=24, площадьАВС=1/2АС*ВС=1/2*10*24=120  №8 треугольник КМЛ, уголЛ=90, КН=9, НМ=36, ЛН=корень(КН*НМ)=корень(9*36)= 18, КМ=9+36=45, площадьКМЛ=1/2*КМ*ЛН=1/2*45*18=405 №9, треугольник КМЛ, уголЛ=90, КЛ=12, МЛ=5, КМ=корень(КЛ в квадрате+МЛ в квадрате)=корень(144+25)=13, радиус вписанного круга=(КЛ+МЛ-КМ)/2=(12+5-13)/2=2, площадь круга=пи*радиус в квадрате=4пи №10 cosB=(АВ в квадрате+ВС в квадрате-АС в квадрате)/(2*АВ*ВС)=(100+64-36)/(2*10*8)=0,8, №11 параллелограмм АВСД, площадь АВСД=АВ*ВС*sinB=4*2*корень3*корень3/2=12
4,8(34 оценок)
Ответ:
ksusha20032
ksusha20032
23.03.2020

Объяснение:

Линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.

Пусть плоскость проведённая через B, D и серединную точку M ребра B₁C₁ пересекается с плоскостью B₁C₁А₁ по прямой MN. M∈B₁C₁, N∈D₁C₁.

⇒MN||BD⇒BDNM-трапеция

BD||B₁D₁; MN||BD⇒MN||B₁D₁

MN-средняя линия треугольника B₁C₁D₁

ABCDA1B1C1D1- правильный прямоугольный параллелепипед⇒ABCD-квадрат, а боковые грани прямоугольники.

B₁M=0,5B₁C₁=ND₁, DD₁=BB₁, ∠MB₁B=∠ND₁D=90°⇒ΔMB₁B=ΔND₁D⇒MB=ND⇒

⇒BDNM-равнобедренная трапеция. Ч.Т.Д.


Докажи, что сечение правильного прямоугольного параллелепипеда ABCDA1B1C1D1, проведённое через B, D
4,7(3 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ