1) Равносторонний треугольник имеет 3 оси симметрии, каждая проходит через вершину и середину противоположной стороны, угол между любыми двумя осями 60°
2) Квадрат имеет 4 оси симметрии, каждая проходит либо через противоположные вершины либо через середины противоположных сторон, и угол между любыми двумя осями не меньше 45°.
3) Правильный 5-угольник имеет 5 осей симметрии, каждая проходит через вершину и середину противоположной стороны и угол между ними не меньше 36°.
4) Правильный 6-угольник имеет 6 осей симметрии, каждая проходит либо через противоположные вершины либо через середины противоположных сторон, и угол между двумя соседними осями 30°.
Значит, правильный многоугольник с наименьшим числом сторон и углом 30° между осями - правильный 6-угольник
Можно рассуждать по-другому. Есть теорема, по которой произведение площадей треугольников AOB и COD равно произведению площадей треугольников AOD и BOC, откуда неизвестная площадь тр-ка AOD = 6·8/4=12. Доказательство этой теоремы очень простое, основывается на вычислении площади треугольника по формуле "половина произведения сторон и на синус угла между ними", а также на формуле приведения sin (180°-α)=sin α.