когда там есть эти "палочки" на самих сторонах и одинаковое кол-во, то это означает, что эти стороны равны. то же самое про углы, но у них вместо этих "палочек" углы.
там ничего сложного и последовательность букв может быть любой, если дело заходит о целостном треугольнике или любой другой фигуре. однако, на углу это не действует. нужно будет определять в определённой последовательности. она может быть любой, разве что сам угол должен находиться посередине.
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
на скрине. надеюсь, качество не сильно плохое.
Объяснение:
в общем, постараюсь объяснить максимально просто.
когда там есть эти "палочки" на самих сторонах и одинаковое кол-во, то это означает, что эти стороны равны. то же самое про углы, но у них вместо этих "палочек" углы.
там ничего сложного и последовательность букв может быть любой, если дело заходит о целостном треугольнике или любой другой фигуре. однако, на углу это не действует. нужно будет определять в определённой последовательности. она может быть любой, разве что сам угол должен находиться посередине.