проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
в треугольнике на рисунке приложения
катет вс=30 см, а вн=18 - его проекция на гипотенузу.
bc²=ав•нв
900=ав•18
ав=900: 18=50 см
высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. из подобия следует отношение:
ан: ас=ас: ав
ан=50-18=32
32: ас=ас: 50 ⇒ ас²=32•50
ас=√1600=40 см
если обратить внимание на отношение катета и гипотенузы 3: 5 в ∆ всн, увидим, что этот треугольник - египетский. отсюда следует ав=50 см, (т.к. меньший катет=30). а ас=40 см. получим длины сторон треугольника, отношение которых 3: 4: 5.
подробнее - на -
Сторона, к которой проведена высота, равна 3+12=15 м.
Высоту нужно найти.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
h²=3*12=36
h=√36=6 (м)
Ѕ=h*a:2
S=6*15:2=45 м²
Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы:
Р=a+b+c
а=√(3*15)=3√5 м
b=√(12*15)=6√5 м
Р=15+9√5 (м)
Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.