3. АВ = AD по условию,
∠ВАС = ∠DAC по условию,
АС - общая сторона для треугольников ВАС и DAC, ⇒
ΔВАС = ΔDAC по двум сторонам и углу между ними.
6.
а) ∠МАВ = ∠NBA по условию,
∠МВА = ∠NAB по условию,
АВ - общая сторона для треугольников МАВ и NBA, ⇒
ΔМАВ = ΔNBA по стороне и двум прилежащим к ней углам.
б) АМ = BN из равенства ΔМАВ = ΔNBA (см. п. а))
∠АМН = ∠ВNН из равенства ΔМАВ = ΔNBA,
∠МАН = ∠МАВ - ∠НАВ
∠NBH = ∠NBA - ∠HBA, а так как ∠МАВ = ∠NBA по условию и ∠НВА = ∠НAB по условию, то и
∠MAH = ∠NBH, ⇒
ΔMAH = ΔNBH по стороне и двум прилежащим к ней углам.
9. ∠САВ = ∠EFD по условию,
∠АВС = ∠EDF по условию,
АВ = AD + DB
FD = FB + DB, а так как AD = BF по условию, то и
АВ = FD, ⇒
ΔСАВ = ΔEFD по стороне и двум прилежащим к ней углам.
12. DE = CE по условию,
∠ADE = ∠BCE как смежные с равными углами,
∠AED = ∠BEC как вертикальные, ⇒
ΔAED = ΔBEC по стороне и двум прилежащим к ней углам.
ответ: 1 - 30°.
2 - 9см
Объяснение: 1 - сумма углов треугольника равна 180°,в прямоугольном треугольнике обязательно есть угол 90°,следовательно 180°-90°-60°=30°.
2 - по теореме о соотношениях сторон и углов прямоугольного треугольника,сторона,лежащая напротив угла в 30° = половине гипотенузы.Если длина этого катета a, то длина гипотенузы 2a
Второй катет b найдём по Пифагору
a² + b² = (2a)²
a² + b² = 4a²
b² = 3a²
b = a√3 см
√3 больше 1, так что из двух катетов катет a, против угла в 30 градусов, является самым коротким.
Найдём длину короткого катета
а + 2а = 27
3а = 27
а = 9 см
Відповідь:
m(5;-1) n(2;3)
(m,n)=m_x*n_x+m_y*n_y=5*2+(-1)*3=10+(-3)=7
Пояснення: