Вычислить площадь боковой и полной поверхностей правильной усеченной четырёхугольной пирамиды, если стороны оснований равны 9 дм и 20 дм, а апофема равна 12 дм.
Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Считаем тр-к равнобедренным, т.О пересечение биссектрис; если угол при вершине по условию 120 гр., то равные углы при основании А и С=(180-120)/2=30гр.; биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка. Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка. Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр. Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5