Равнобедренный треугольник условно назовём ABC с основанием AC. Если периметр треугольника ABC равен 24 см, то значит, что каждая его сторона будет равна по P = 24 : 3 = 8 см (т.к. у равнобедренного треугольника все стороны равны). Равнобедренный треугольник начертим от стороны BC. Получится равнобедренный треугольник BCD с основанием BC. Мы знаем, его его периметр равен 36 см. У треугольника BCD равны стороны BD и DC, а сторону BC мы знаем. Значит, сначала находим сумму длин равных сторон 36 - 8 = 28 см. Значит, BD = DC = 28 : 2 = 14 см ответ: BC = 8 см, BD = 14 см, DC = 14 см
Сначала найдем проекцию апофемы на основание пирамиды = sqrt (17^2 - 15^2) = sqrt (289 - 225) = sqrt(64) = 8 . Как известно, величина проекции равна половине стороны основания . Сторона основания равна = 8*2 = 16 . Площадь полной поверхности пирамиды равна S =1/2 * A* a * 4 + Sосн = 2 *A* a + a^2, где A - апофема , a - сторона основания призмы . Объем пирамиды найдем по формуле V = 1/3 * Sосн * h = 1/3 * a^2 * h , где a - сторона основания , h - высота пирамиды . S = 2 * 17 * 16 + 16^2 = 544 + 256 = 800 V = 1/3 * 16^2 * 15 = 1/3 * 256 *15 = 1280
ответ: BC = 8 см, BD = 14 см, DC = 14 см