нужно решить уравнение в целых числах. пусть равные стороны по х см, а основание у, тогда периметр треугольника 2х+у=60, откуда х =(60-У)/2, х=30-у/2. Этому уравнению должны удовлетворять натуральные числа, которые подчиняются неравенству треугольника, т.е. всякое число из этой тройки меньше суммы двух других, и у кратен двум. Путем перебора найдены такие тройки (29,29,2),...(16,16,28) ВСЕго 14
Следующая тройка не удовлетворяет неравенству треугольника, т.к. для (15.15,30) 30 =15+15, и тогда все три вершины лежат на одной прямой, и нельзя построить треугольник с такими данными, следующие тройки тоже обладают этим свойством. Поэтому ответом будет 14 равнобедренных треугольников.
Удачи.
Давай, равнобокая трапеция это равнобедренная трапеция, боковые стороны равны
1)Обозначим ее АВСД АД -нижнее основание ВС- верхнее
опустим высоту из вершины В на нижнее основание , получаем прямоугольный треугольник АНВ у которого угол А = 60 ( по условию) , значит другой угол этого треугольника = 30 градусов ( сумма острых углов в прямоугольном треугольнике = 90 градусов)
2)По условию боковая сторона = 4 = АВ , есть правило что катет лежащий против угла в 30 градусов равен половине гипотенузы,следовательно, АН= 1/2 АВ то есть = 2
3)Опустим высоту из вершины С , назовем СР, треугольники АНВ= СРД ( по 1 признаку) , значит стороны АН=РД=2
4) Вся сторона АД= 12, а ВС= НР значит отнимаем от АД-АН-РД= 8
ответ :8