Пусть этот треугольник будет АВС, где АВ и АС это катеты, а ВС - гипотенуза. Так как один угол в прямоугольном треугольнике равен 60, то другой 90-60=30 Значит, что данный треугольник - это половина равностороннего треугольника ДВС (у которого все стороны и углы равны) и меньший катет АС - это будет половина стороны ВС, так как больший катет АВ является одновременно и высотой и медианой равностороннего треугольника ДВС. Тогда пусть катет АС будет х, тогда гипотенуза ВС будет 2х, а их сумму мы знаем и составляем уравнение: х+2х=96 3х=96 х=32 см (это длина катета АС) тогда длина гипотенузы ВС будет 32*2=64 см
Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².