В прямоугольном треугольнике ABCD < C равно 90 градусов,< А равно 30 градусов сторона BC = 12 см .Найдите длину медианы проведенной из вершины прямого угла
MN║LK ⇒ MN, LK ⊂ (MNL), в этой плоскости рассмотрим четырёхугольник MNKL: у него две противоположные стороны параллельны и равны (MN, LK),поэтому это точно параллелограмм у ромба помимо этого ещё все стороны равны, значит чтобы доказать, что MNLK - ромб осталось только доказать, что MK=NM т.к. если это выполняется, то NL=MK - как противоположные стороны параллелограмма, а значит MN=NL=LK=KM.
BD=2MK т.к. MK - средняя линия ΔBDC.
BD=AC - по условию.
2MK=BD=AC=2MN ⇒ MK=MN. Доказали, значит MNLK это параллелограмм у которого все стороны равны, то есть это ромб.
Док-во: Рассмотрим параллелограмм ABCD, в параллелограмме противоположные стороны и углы равны, значит сторона CD= 7 см. Так же нам известно что AE бис-са BAD сторона EC=3 см. Проведем от точки E прямую к стороне AD (назовем эту точку H), как известно у параллелограмма противоположные стороны паралельны. Сторона BA параллельна EH. Расс-им треугол. ABE он равнобедренный. В равнобедренном тругол-ке 2 стороны равны, значит сторона BE -7 см, известно что EC-3 cм, что бы узнать всю сторону BC 7+3=10, сторона BC=10 см, т.к противоположные стороны и углы у пар-ма равны, то сторона AD-10 см. Р пара-ма= 10+10+7+7=20+14=34 см P= 34 см
Дано: D∉(ABC); AC=BD; AL=LB (L∈AB); BK=KC (K∈BC); CM=MD (M∈CD); DN=NA (N∈DA).
Доказать: MNLK - ромб.
AC║MN и AC=2MN т.к. MN - средняя линия ΔACD.
AC║LK и AC=2LK т.к. LK - средняя линия ΔACB.
MN║AC║LK ⇒ MN║LK; 2MN=AC=2LK ⇒ MN=LK
MN║LK ⇒ MN, LK ⊂ (MNL), в этой плоскости рассмотрим четырёхугольник MNKL: у него две противоположные стороны параллельны и равны (MN, LK),поэтому это точно параллелограмм у ромба помимо этого ещё все стороны равны, значит чтобы доказать, что MNLK - ромб осталось только доказать, что MK=NM т.к. если это выполняется, то NL=MK - как противоположные стороны параллелограмма, а значит MN=NL=LK=KM.
BD=2MK т.к. MK - средняя линия ΔBDC.
BD=AC - по условию.
2MK=BD=AC=2MN ⇒ MK=MN. Доказали, значит MNLK это параллелограмм у которого все стороны равны, то есть это ромб.