ответ777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777:777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777
777
Объя777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777снение:
777777
Если я не ошибаюсь, то доказательство не сложное.
По второму признаку равенства прямоугольных треугольников: острый угол(А) и прилежащий к нему катет(АС) одного треугольника соответственно равны острому углу(А) и прилежащему к нему катету(АВ) другого треугольника.
По рисунку, АС и АВ равны. А острый угол, прилежащий к обоим этим катетам, у обоих треугольников общий. Следовательно, у обоих треугольников он равен. И, доказав, что острый угол А и прилежащий к нему катет АС треугольника ACD соответственно равен острому углу А и прилежащему к нему катету АВ треугольника ABF, мы доказали равенство этих обоих треугольников.
Ч.т.д.
Находим площадь треугольника по формуле Герона:S=sqrt(p(p-a)(p-b)(p-c)).
p=(25+17+12)/2=27см. S=sqrt(27*15*10*2)=90см^2. Площадь ортогональной проекции равна Площади треугольника, умноженной на косинус угла между плоскостями:
S2=S*cos60=90/2=45см^2.
ответ: 45см^2.
Объяснение: Удачи