ДО ТЬ! Я 11 класс! В основі прямої призми лежить ромб зі стороною 16 см, і кутом 60. Більша діагональ призми нахилена до площини основи під кутом 30. Знайти площу бічной поверхні призми.
Рассмотрим сечение призмы, перпендикулярное всем трём боковым рёбрам. Это треугольник. обозначим стороны этого треугольника a, b, c. каждая боковая грань призмы - параллелограмм, для оторого известна одна из сторон - боковое ребро призмы, 5 см. площадь двух граней дана. S_1 = a*5 = 20 a = 4 см S_2 = b*5 = 20 b = 4 см Теперь известны две стороны сечения по 4 см и угол между ними в 60 градусов. треугольник сечения равнобедренный с углом при вершине 60° Угол при основании (180 - 60)/2 = 120/2 = 60° Т.е. треугольник равносторонний c = 4 см площадь третьей грани S_3 = 4*5 = 20 см^2 Полная боковая поверхность 3*20 = 60 см^2
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
.ПАЛРВАТП. 9 МЬИРММАИ 8УАГСНФГ КНВ70У9ЦГАЦКЫВФАВА
Объяснение: