Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы находится в центре основания конуса. Образующая конуса равна 5√2. Найдите радиус сферы.
Тогда через любые три из них, т.е. через прямую, можно провести бесчисленное множество плоскостей.
Случай 2.
Три точки равсположены на одной прямой, четвертая не лежит на той прямой.
Через прямую и точку, не лежащую на ней, можно провести плоскость, притом только одну.
Случай 3.
Ни одни три точки из четырех не расположены на одной прямой.
Через любые три точки можно провести плоскость, притом только оду.
а) Через точки 1,2,3 можно провести одну плоскость. б) Через точки 1,2,4 можно провести вторую плоскость. в) через точки 1,3,4 можно провести третью плоскость. г) через точки 2,3,4 можно провести четвертую плоскость.
Т.е. при таком расположении точек можно провести четыре плоскости.
Билет №1. 1.Фигуры на плоскости 2 Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон. 3Рассмотрим ΔBAO и ΔOCD AO=OC - по условию BO=OD - по условию ∠AOB=∠COD - вертикальные ⇒ ΔBAO=ΔOCD - по первому признаку (2 стороны и угол между ними)
Билет №2. 1. геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла)Это угол равный 180..Любой угол разделяет плоскость на 2 части. Если угол неразвёрнутый, то одна из частей называется внутренней, а другая внешней областью этого угла.Если угол развёрнутый, то любую из двух частей, на которые она разделяет плоскость можно считать внутренней областью угла. Фигуру, состоящую из угла и его внутренней области, так же называют углом.От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°,и только один. 2. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам. 3.т. к. Сумма углов треугольника 180°, значит третий угол 180-32-57=91° Билет №3. 1.Равносторонним треугольником называется треугольник, у которого все его стороны равны.1) Все углы равностороннего треугольника равны по 60º.2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают,3)Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин.6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности.7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе.8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности. 2.Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными. 3. Возьмем отрезок АД за х, тогда ОА = х+8: х+х+8=24. 2х=16, х=8
В условии не указано расположение точек.
Случай 1.
Все четыре точки лежат на одной прямой.
Тогда через любые три из них, т.е. через прямую, можно провести бесчисленное множество плоскостей.
Случай 2.
Три точки равсположены на одной прямой, четвертая не лежит на той прямой.
Через прямую и точку, не лежащую на ней, можно провести плоскость, притом только одну.
Случай 3.
Ни одни три точки из четырех не расположены на одной прямой.
Через любые три точки можно провести плоскость, притом только оду.
а) Через точки 1,2,3 можно провести одну плоскость. б) Через точки 1,2,4 можно провести вторую плоскость. в) через точки 1,3,4 можно провести третью плоскость. г) через точки 2,3,4 можно провести четвертую плоскость.
Т.е. при таком расположении точек можно провести четыре плоскости.