М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sobkevichbozhep08t40
sobkevichbozhep08t40
22.01.2022 11:04 •  Геометрия

В рівнобедрений трикутник вписано коло. Точка дотику ділить його бічну сторону на відрізки, пропорційні числам 3 і 2 (рахуючи від вершини кута, прилеглого до основи). Знайдіть сторони цього трикутника, якщо його периметр дорівнює 1,12 м. *

👇
Открыть все ответы
Ответ:
arturkill12309
arturkill12309
22.01.2022
Построить касательную к данному кругу:
 а) параллельную данной прямой.
Из центра окружности опустить перпендикуляр на данную прямую.
Он пересечёт окружность в точке касания.
Через полученную точку провести прямую, перпендикулярную построенному перпендикуляру к данной прямой.
Эта прямая будет параллельна данной прямой.

б) перпендикулярную к данной прямой.
Из центра окружности опустить перпендикуляр на данную прямую.
Из центра окружности восстановить перпендикуляр к построенному перпендикуляру.
Он пересечёт окружность в точке касания.
Через полученную точку провести прямую, перпендикулярную к данной прямой.
Эта прямая и будет перпендикулярна данной прямой.

в) под данным острым углом к прямой.
В любой точке данной прямой построить прямую под заданным к ней углом.
Затем по пункту а) построить параллельную касательную прямую.
Как построить касательную к данному кругу: а) параллельную данной прямой; б) перпендикулярную к данн
4,5(75 оценок)
Ответ:
alexc123
alexc123
22.01.2022

Поскольку фокусы гиперболы лежат на оси абсцисс симметрично относительно начала координат, то это стандартная гипербола, которая имеет уравнение:

\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1, где а - действительная полуось, b - мнимая полуось

Поскольку дана точка гиперболы, то подставим ее координаты в уравнение:

\dfrac{(-5)^2}{a^2}-\dfrac{3^2}{b^2}=1

Также распишем эксцентриситет гиперболы:

\varepsilon=\dfrac{\sqrt{a^2+b^2}}{a} =\sqrt{2}

Преобразуем. Возведем в квадрат:

\dfrac{a^2+b^2}{a^2} =2\\a^2+b^2=2a^2\\b^2=a^2

Подставим в уравнение с координатами выявленное соотношение:

\dfrac{25}{a^2}-\dfrac{9}{a^2}=1\\\\\dfrac{16}{a^2}=1\\\Rightarrow a^2=16\\\Rightarrow b^2=16

Все необходимые данные для записи уравнения есть:

\dfrac{x^2}{16}-\dfrac{y^2}{16}=1

Поскольку квадрат мнимой полуоси b^2=16, то ее длина - соответственно |b|=4

4,7(75 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ